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A survey paper on space rendezvous appears in Astronautica

Acta I with many references. Terminal guidance for. space rendez-

vous has been _ivzd_d into two classes: That based on orbital

2
mec.lanics in the time domain and that based on proportional

navigation. 3'4 This paper deals mainly with problems of des-

cent trajectories including soft-landing. 5'6'7'8

(i) General__E_uation_s of Motion

A point mass m is attracted to a planet by a central

force proportional to the inverse square of the distance. The

equations of motion are 9

dk 2a8

d_" u_ (i)
dk

dau + d_ du go = _ __ar
doe 2k dO + u _ (2)ku o ku 2

1
where u -

r
- inverse of the radius vector, (3)

k = h 2 = [r28]_= square of the specific angular momentum,

(4)

a0,a r = transverse and radial specific forces, respectively,

and go = gravitational acceleration at the surface of the

planet.

A further transformation is advantageous by virtue of

equation (i). Let

du dk du du

d-_ = de dk = _-_ , (5)
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If equations (5) and its derivative with respect to e are sub-

stituted into equation (2), we have

d2u u s d 2ae 1 du u s 2 go ar

d--_ + [2ae dk (7 I+ E l _ + (2-_0) In -----kUo + k-_]= O, (6)

and d8 u s-- = -- by inverting equation (i). (7)
dk 2a 8

The dependent variable k in equation (i) becomes the inde-

pendent variable k in equations (6) and (7). Equation (6) is

a key equation which does not contain e explicitly. It is

linear in u and can be solved independently of equation (7),

a...e.e ar

provided that u s and _ are expressed in terms of k, such as

a8 = u s Ge(k ) and ar = u2 Gr(k), (8)

where Ge(k ) and Gr(k ) are functions of k only.

(2) The Descent TrajectorY

A vehicle in orbit is traveling in the direction b'- b as

shown on Fig. 1. At point b the vehicle begins its descent

phase by firing a retro-rocket having a specific force with a

radial component a r and transverse component a e. The descent

trajectory is defined by its polar coordinates (r,e) measured

from the point of soft-landing 0.

The measurement of e can be made by inertial means, e.g.

an inertial guidance package with both gyros and accelero-

meters to determine the local vertical with respect to site

1
vertical. The quantity u = ? can be determined by measuring

the altitude of the vehicle above the planet. The controlled

specific forces a e and a r will be in term_s of the known

quantities e and u.

d"



For the virgin landing of a vehicle near an unexplored

planet, it is desirable to allow the astronaut to hover the

vehicle near the surface. The conditions of hovering are zero

velocities and zero accelerations in both the transverse and

radial directions.

(a) Transverse Specific Force

In order to obtain zero transverse velocity the specific

= h e = O.
angular momentum h° at point 0 should be zero, thus ko o

The transverse specific force a e should be zero so that the

acceleration of the vehicle in the same direction is also zero.

Thus we have

_-u___ (L)n O<n (9)
ae 2_ kb '

where _ is a constant. The power index n should be a positive

real number so that a_ is bounded at k - O.

(b) Specific Angular Momentum

U s
If the result of _ from equation (9) is substituted into

2a_

equation (7) and the integration is performed, we have

8 kl-n
--: (i0)

eb kb l-n '

where kb is the value of k at 8 = eb. Solving for k in terms

1

of 8 for n = _ we obtain

L= __e2 . (11)
2

kb eb
h

The specific angular momentum ratio _bb may be obtained by

combining equations (4) and (ii) into a linear relation

h e (12)



(c) Radial Specific Force

a_£ 1
The differentiation of u 3 from equation (9)(using n = _)

with respect to k may be obtained and substituted into equation

(6),

i __o go ar
d___d_--_+ ( ) _ + _e( )(u kUo_ + _--_) = O. (13)

The value of a r must be chosen such that it is bounded every-

where during the course of landing, also it must satisfy the

boundary condition of soft landing and hovering. Thus

ar = u2[go ku + _2(k2 _2-
U o

(14)

where _ and { are positive real constants.

The value of ar in equation (14) is bounded since the

terms u and k are always positive real finite quantities. At

the surface of the planet the value of ar should be equal to

go" This is obtainable by substituting k = 0 and u = u o into

equation (14). The above relation guarantees that the radial

acceleration is zero at the point of landing.

(3) Solution of the Problem

If equation (14) is substituted into equation (13) one

obtains a linear equation in u.

_2_2+ + o)= o,
dk 2 k e

(15)

or I dU
d2__Eu + _ _-_+ (_2
dk 2

2 2

_L_) u=o (16)

where _ = _, (17)

r-r

o . (18)
and U = -(u - Uo) = rr °

Under the boundary condition that U = 0 at k = 0 the



solution of equation (16) in term of fractional order Bessel

I0, ii, 12Functions of the first kind aS shown in Fig. 2(a) is

e2

U__= (19)
U b Jm_ (c°k b ) '

where U b is the value of U at e = eb .

The derivative of U with respect to k can be shown to be

COUb d-_ = _bb(e_b ) Jco_(mkb _b)-Jm(+l(_kb _b ) " (20)

For the Bessel Function of 1/2 order equations (19) and (20)

become simply sine function of e a

ea

-I sin(mkb _e_) and (21)
_bbU= ( ) sin(ek b)

sin (okb e -I e 2 i ea -I _2

_U b (_) = (_b) [cos(_k b _) - _-(mk b _) sin(ink b _)]. (22)

By differentiating equation (19) with respect to e one

obtains

ebJm_(_kb) dU e r_ ,e -2 ea ea

)]"
For 0(m_, the term Jm_+l(O) is zero. However, the term Jm_

is of the order of magnitude of (e2) m_ as e..-,o.

dU

term_is of the order of

el-2+2m_ = 82m_ -I

From equation (24) and the condition dr = I dU
de u s de'

and positive it is concluded that as e-_0,

Therefore the

where u a is real

d--qU-_oofor O<e_< I, also drde d-_ "_ oo, vertical landing;

d--U-U= constant for e_ = 1 also dr constant, inclined landing ;de =



1 _, also drdU = 0 for ---=
de de 0, horizontal landing. (25)

(4) The Characteristic Root

The state of the vehicle at the starting point b is com-

dU I = W bpletely defined if the quantities kb, eb, U b and _ b

with respect to the planet are known. From equation (23) we

have

ebJ__(_kb) _-_
wb J_(_kb) -J _+l(_kb). (26)

2_k b U b _kb

The above equation may be solved for its characteristic root

_k b = q

provided eb,Ub,Wband _ are given. It is emphasized here

that _ is the lowest positive real root of equation (26).

(27)

An example is given here for descent from a circular orbit

(Wb = 0) along a trajectory of Bessel Function of 1/2 order.

Thus from equation (23) one obtains

e2 -I e2 .

ebsin (_) (_)dU = 2 cos(_k b _)- (_k b _) sln(_k b _)l =0
Ub__ e=eb eb [e=eb

(283
from which we have

tan _k b = 2 _k b . (29)

The value ok b = q = 1.16562 may be obtained for its funda-

mental root for the case _( = I/2.

dr

The dimensionless forth of _-_is shown in Fig. 2(b) for

ek b = q and various values of e_.

(5) The Angular and Radial Velocities

With the aid of equations (4) and (ii) the angular velocity

may be written as



From equations (18),

8 u2

eb

(19) and (30) we have

(30)

e-_---=. (u_)2( )[1- Uo (mkb) ] . (31)
Ob Jco_

The value of $ at e = 0 is zero as shown in Fig. 3(a). This

is in conformity with the requirement of soft landing. Also

dr = u-2 dU (32)

where dU dO dU_kl/2 u 2 dU

Combining equations (ll)_ (23), (32) and (33) one obtains

(33)

which is also plotted in Fig. 3(b) for mk b = _ and various

values of _.

It is expected that the reasoning given in discussing

equation (24) holds also here.

dr
the term _T is

e2-2+2_ = e2_ (35)

drI = o, for o<m_ . (36)

i

therefore _ 0=0
I

Equation (36) indicates that the radial velocity of the

Thus the order of magnitude of

vehicle is also zero at the point of contact on the surface

of a planet as would be expected.
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